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The theory of nonequilibrium fluctuations in open systems is extended to 
nonlinear situations. It is shown that the usual birth-and-death type of 
stochastic formulation of chemical kinetics is in general inadequate and has 
to be replaced by a more detailed phase-space description. As a consequence, 
for large classes of nonlinear systems arbitrarily far from equilibrium, the 
classical Einstein fluctuation formula can be extended, provided the steady 
reference state is asymptotically stable. The case of oscillatory or unstable 
systems is also discussed. It is conjectured that in such systems, the departure 
from the steady state is governed by large fluctuations of "macroscopic" 
size, while small fluctuations are still dcscribed by the extended Einstcin 
formula. Nonequilibrium macroscopic instabilities such as chemical or 
hydrodynamic instabilities seem therefore to bear strong similarities to 
first-ordez phase transitions. 
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1. I N T R O D U C T I O N  

R e c e n t  advances  in i r revers ib le  t h e r m o d y n a m i c s  have  d r a w n  a t t en t ion  on 

s o m e  genera l  and  unexpec t ed  fea tures  o f  s t eady  n o n e q u i l i b r i u m  states.  ~x) O f  

p a r t i c u l a r  in te res t  fo r  the  p re sen t  inves t iga t ion  is the o b s e r v a t i o n  tha t  in 
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nonlinear systems the stability of such states may be compromised and lhe 
system can subsequently evolve to a new regime showing spatial, temporal, 
or functional organization. Hydrodynamic instabilities have long been known 
to give rise to this phenomenon. It is now well-established that, unexpectedly, 
in purely dissipative systems such as open systems undergoing certain types of  
chemical reactions, the steady nonequilibrium states may also become unstable 
and a new type of  dissipative structure may emerge beyond instability. 2 

The universality of instabilities in macroscopic physics and the impor- 
tance of the new regime beyond the transition in fluid dynamics, physical 
chemistry, and biology are sufficient to justify the interest for studying the 
behavior of  fluctuations around nonequilibrium states in nonlinear systems. 3 
Such a study is indeed a necessary prerequisite to a real understanding of the 
mechanism of setting up an instability and of the evolution of the system to 
the new macroscopic state beyond instability. In many treatments, fluc- 
tuations are introduced a priori in the macroscopic equations of  evolution. 
This procedure, however, compromises from the very beginning the possibility 
to really understand the emergence of fluctuations. In addition, especially in 
nonlinear systems, it may give rise to inconsistencies related to the time 
scale of  variation of the fluctuations. It  follows that a satisfactory theory of  
nonequilibrium fluctuations must be based on statistical mechanics or at 
least on the theory of stochastic processes. 

As a first step in this program, the nonequilibrium fluctuations in open 
chemical systems have been studied recently ~al in an approach based on the 
stochastic theory of chemical kinetics, a very clear presentation of which is 
available. ~4~ As explained in Ref. 3, the choice of  chemical kinetic models was 
motivated by the simplicity of  the mathematical formulation due to the 
discrete character of  the stochastic variable and by the fact that, by varying 
the affinities, one can obtain situations very far from equilibrium, including 
the possibility for unstable transitions. 

The main conclusion of the Nicolis-Babloyantz analysis I'~ is that in the 
most general sequence of  monomolecular reactions in ideal mixtures arbi- 
trarily far from equilibrium, the probability of  fluctuations around the 
steady state 4 of  the number of  particles of  an intermediate component  X is 
given by a Poisson distribution. Alternatively, in the limit of  small fluctua- 
tions, one obtains a Gaussian distribution which is shown to reduce to the 
form 

P(~ X) oc exp[($2S)o/2k ] (1) 

2 For a general review see Ref. I. 
�9 ~ The present paper gives the dctails of the calculation of the stochastic approach to the 

fluctuations far from equilibrium. Most of the gcneral ideas have been given earlier? '-'a,~" 
4 In the models studied in Ref. 3 the steady nonequilihrium states are stable with respect 

to arbitrary perturbations. 
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where 3X : :  X -- X 0 , X0 being the value of X at the steady nonequilibrium 
state, k is Boltzmann's constant, and �89 is the second-order excess 
entropy evaluated around the steady state. Equation (1) shows that for the 
linear, stable modes studied in Ref. 3 the classical Einstein equilibrium 
formula (1.a~ can be extended, provided one uses suitable steady-state para- 
meters rather than equilibrium quantities. An important consequence is that 
in an ideal reacting mixture, the mean quadratic fluctuations are still given 
by an extension of the well-known thermodynamic expression 

~ - - X  :-= XO (2) 

Similar results have been derived in Refs. 5-8. The particular models studied 
in Refs. 7a, b and 8 dealt with current fluctuations in electrical circuits. The 
case of nonequilibrium chemical kinetics has been considered in Ref. 5. 
Another class of situations for which the equilibrium Einstein theory can be 
extended refers to systemswhich are close to thermodynamic equilibrium, c~,~.s~ 

The object of  the present paper is to present the details of the analysis 
of fluctuations in nonlinear systems far from equilibrimn as outlined in recent 
papers by Prigogine and the author, t2a,~l In Section 2, we consider a simple 
nonlinear chemical model involving a single bimolccular step. Assuming 
that thc macroscopic mass-conservation equations define a Markovian 
process in the number-of-particles space, we derive a stochastic master 
equation in this space using the methods of Refs. 3 and 4. Surprisingly, this 
cquation leads to results which, far from equilibrium, are ditferent from (I) 
and (2) and seem to imply that in nonlinear systems, the behavior of  fluc- 
tuations depends strongly on the detailed properties of the individual 
kinetic steps. On the other hand, a number of general arguments indicate 
(details are given in Section 2) that in the whole range of local equilibrium 
theot3, in which local thermodynamic variables may be used to describe 
irreversible processes, Ij.3.a~ Eq. (1) remains valid. Now, in a system of 
chemical reactions, local equilibrium is usually attained because of the 
frequent elastic collisions with a solvent or with an inert component of  the 
gaseous mixture. This suggests that a proper description of fluctuations 
requires the details of  the microscopic behavior of the system as given, e.g. by 
a kinetic equation of the Boltzmann type. Assuming that this equation defines 
a Markovian process in the complete phase space (including internal states 
of individual molecular species), we derive in Section 3 a generalized master 
equation in this space following a method due to Siegert. The result is that 
Eqs. (1) and (2) are recovered as consistent approximations in the limit of  
dilute mixtures. The conclusion is thus drawn that in nonlinear systems the 
usual birth-and-death type of stochastic approach is inadequate and a 
satisfactory description must be based on a phase space analysis. 
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As a preliminary to the problem of fluctuations around instabilities, the 
Volterra-Lotka model is studied in Sections 4 and 5 in its chemical kinetic 
and its ecological versions. The phase space analysis shows that small thermal 
fluctuations obey Eqs. (I) and (2). However, the system may evolve from the 
steady state by a mechanism of large (macroscopic) fluctuations which drive 
the average values to a time-dependent regime. The usual birth-and-death 
type of stochastic analysis predicts a very different behavior: Small fluctua- 
tions increase with time and, stochastically, the steady state is never stable. 
According to Section 2, the latter possibility has to be ruled out in chemical 
kinetics. However, in an ecological system, both the regime predicted by the 
phase space and the usual stochastic description are possible and correspond 
to different types of situations. Section 6 is devoted to some comments 
concerning the mechanism of setting up a macroscopic instability in a dissipa- 
tive system and the implications of the results of Sections 3 and 5 in nonlinear 
thermodynamics of irreversible processes, 

2. A S IMPLE N O N L I N E A R  M O D E L  

The main ideas of this section will be illustrated on the simple bimole- 
cular scheme: 

A q- M ~ I ~ X +  M (3) 
2X k~ E - ?  D 

A slightly different version of this scheme has already been considered in 
Ref. 3. The system is open to large reservoirs of A, M, E, D. Inverse reaction 
rates are neglected. The system thus operates automatically far from thermo- 
dynamic equilibrium. The overall reaction is 

2A --+ E -i- D (3a) 

and the macroscopic chemical kinetic equations read, for an ideal mixture, 

dX/dt ~ kxAM -- 2k2 X2, A, M -- const (4a) 

The system admits a single steady state 

Xo -- (klAM/2k2) 1/2 (4b) 

which is asymptotically stable with respect to arbitrary perturbations. 
In the macroscopic description, Eqs. (4a)-(4b), fluctuations are neglect- 

ed. We now adopt a more refined description and assume that (4a) 
define a Markovian stochastic process in the space of the total numbers of 
particles of the constituents A, M, D, E, X. In chemical kinetics, it is usually 
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implied that these variables provide a consistent description, independent of  
the details of  the dynamics in momentum space/4~ The system is now des- 
cribed in terms of a function P(A,  M,  D, E, X, t) which gives the probability 
for finding given values of  the particle numbers at time t. The equation of  
evolution for this function (master equation) was established and solved 
approximately in Ref. 3. In the reduced form where a summation over the 
reservoir variables is performed, the result reads 13~ (the system is assumed to 
remain spatially uniform): 

dP(X, t)/dt = k I A M P ( X  --  1, t) - -  kl A MP(X ,  t) 

+ k2(X -+- 1)(X q- 2) P(X  § 2, t) - -  ko.X(X --  1) P(X, t) (5) 

where A, , 'v/are now the average values of  the number of  particles of  A, M 
over the reservoir distribution, s 

It is instructive to study the solutions of  Eq. (5) in the limit of  small 
fluctuations. Following van Kampen,  (a~ we express this limit by setting 

X ----- .~ 4,- ex, , ~: i x,"X, ~ .  1 (6) 

where X is a macroscopic regime close to or at the steady state (4b) and x is a 
random fluctuation. Expanding consistently both P and the coefficients in 
Eq. (5) in powers of  E, we obtain, to the first nontrivial order, a Fokker-Planck 
equation of the form 

__ ( k l A M  ) ~2P(x, t) ?.P(x, t) 4 X  ~: xP(x ,  t) -k i- 2X z (7) 
~t c-=x - 2k2 ~x 2 

For fluctuations around the steady state, X' = X 0 . Equation (7) then admits 
a time-independent solution whose second moment  is easily seen to be 

~X 2 :- [(kiAM/k2) -',- 4Xog-]/8X0 = -~)C0 (8) 

Clearly, Eq. (8) is incompatible with a Poisson distribution and therefore 
also with (1) and (2). The factor ~ in front of  X o is model-dependent. The 
fluctuations in many other nonlinear models have been tested by the same 
method. An example is reported in the appendix. The general answer was a 
non-Poisson distribution with mean quadratic fluctuations depending on the 
individual kinetic steps. Thus no general statement comparable to Eq. (2) 
seems to be compatible with the master equation for the probability distribu- 
tion. 

Equation (5) implies the validity of a decoupling procedure discussed in detail in Ref. 3. 
According to this assumption the reservoir state is assumed to vary in a different scale 
than the state of the subsystem (X). 
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In Ref. 3, the model discussed in this section was studied in the gener- 
ating function representation. Defining TM 

J ( s x ,  t)  - -  ~ s x x p ( s ,  t )  (9) 
X=O 

one obtains from (5) the following equation for f :  

e f / e t  = k l A M ( s x  . -  l ) f  + k2(l -- sx'~)(O~f/Osx 2) (9a) 

This equation admits the approximate solution 

f ( s x ,  t) = exp[Xo(sx  - -  I)111 -]-~(Sx - -  1) --  ~Xo(Sx - 1) z 4 . . . .  ] (9b) 

In Ref. 3, the quadratic and subsequent terms in (Sx ~ 1) in the r.h.s, of  this 
relation were neglected. The remaining terms produced the result (2) for  
small fluctuations and a distribution for X which was of the Poisson form. It  
is easily seen, however, by inverting Eq. (9b) to the corresponding form for 
P ( X )  that the linear term in (Sx - -  1) in Eq. (9a) does not constitute a con- 
sistent approximation.'; When the subsequent terms are taken into account, 
the result (2) is no longer valid and one again obtains Eq. (8), which is 
incompatible with a Poisson distribution or with Eq. (1). 

Is it possible to accept this conclusion for an ideal mixture of  chemically 
reacting components? The following argument shows that such a result 
cannot be valid. Consider a classical system of p components and let 
N[~ dr dp bc the number of  particles of  component  ~, in a phase space volume 
element dr dp around a value p of  the momentum and r of  the position in 
space (~, = 1,..., p). By definition 

N~p = ~ 3(r - -  r,7) 3(p --  p~) (I0) 

Because of the intermolecular interactions, the functions N~ are, for fixed 
values o f r  and p, random functions of  the time. Let P({N~}, t) be the distribu- 
tion function for the different values of  Nr~p. Denoting by a bar the average 
over this distribution, one can derive the following general identities 7 (1~1. 

N~D(t ) = F~"(r, p, t) ( l l a )  

~/ ' t) ~N~p(t) 3N~'p,(t) : :  g(r --  r ') 8(p - -  p') 3r~F~Cr, vv, 1 , ,  P, t)  § G12 (r, r', p, p ,  
( l lb )  

e Thus the final equation (3.24) of the Nieolis-Babloyantz paper ~3) is wrong, although the 
analysis of Section III and the approximate result (3.22) are correct. 

7 Similar relations are used in the theory of point processes, e.g., cascade processes. For 
a detailed discussion, see Bharucha-Reid, Ref. 4, Ch. 5. 
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Here F?' denotes the singlet Boltzmann density distribution function, (7~'" 
the two-particle correlation function, and 3N~p is an excess variable defined 
as 3 Nip --- Nip .... M~. 

Let us consider Eqs. ( l l a ) - ( l l b )  in the limit of a dilute mixture. In 
general, bo th / : ,  and G~ are complicated functionals of the interactions and 
of the number densities through the kinetic equations describing their time 
evolution. Here, we are especially interested in systems described by a local 
equilibrium theory, in which the state functions such as entropy density are 
described locally by the same variables as in equilibrium and depend on time 
implicitly, through these local variables. A sufficient condition for the 
validity of  this theory is that the distribution functions of velocities and 
relative positions deviate only slightly from their local equilibrium forms ~',~ 
F~'j (~ G'~ ''~ Setting 

FI~ ~ F~ '((') == local Maxwellian -- O(n) (12a) 

one obtains 

(.;~:( ~_ O(,VV) 12b) 

n~ being the number density of component 7 (nv "-~ 1 ill dilute systems). It 
follows that in a dilute mixture, Eq. (1 lb) becomes 

3N~(t) aN~p,(t) =- 8(r -- r') 8(0 - p') 6.~,F, " -~- O(n 2) (13) 

Integrating over r, r', p, p', we obtain 

(14) 

.... V" being the number of  particles of constituent 7 in the volume V. Equation 
(14) has the same structure as the generalized Einstein relation (2) and in- 
dicates that, in contrast to the result given in Eq. (8), in a local equilibrium 
theory, tile mean square fluctuations in a dilute system are given by a univer- 
sal expression independent of the particular model. 

It is not difficult to see that the discrepancy between this general argument 
and the analysis based on the usual stochastic master equations of the type 
studied in this section is due to the fact that for nonlinear systems, the sto- 
chastic description in the space of the total numbers of particles is inadequate. 
The difficulty becomes particularly transparent in the case of a local equili- 
brium theory. In a dynamical system, such as a dilute reactive mixture, local 
equilibrium is secured by the frequent elastic collisions with a dense inert 
component. The latter restore continuously an average Maxwellian distribu- 
tion which otherwise would be perturbed by the reactive collisions. Now this 



202 G. Nicolis 

dynamical process involves two largely separated time scales: the relaxation 
time between elastic collisions, which is a very short time, and the macroscopic 
scale over which the chemical composition changes as a result of  reactive 
collisions. The effects related to the relaxation time are fundamentally 
microscopic and cannot be accounted for correctly in a description where the 
internal states (e.g., the values of  the momentum) of the molecules are 
discarded. We are thus led to the conclusion that in a realistic chemical 
kinetic problem, fluctuations must be discussed on the basis of  a kinetic 
equation such as the Boltzmann equation containing both reactive and 
elastic collisions, rather than in terms of the macroscopic chemical kinetic 
equation (4) in which the effects referring to the fast time scale have been 
averaged. 8 It is only in the limit of linear systems or of  systems chose to 
equilibrium, in which fluctuations involve a single time scale, that the two 
approches become compatible. The condition that the stochastic master 
equations for fluctuations should be compatible with the Boltzmann equation 
is also stated in a paper by Oppenheimet  al., (1~) who, however, did not carry 
further the consequences of  this remark?  

3. PHASE-SPACE D E S C R I P T I O N  O F  F L U C T U A T I O N S  

Let us now outline briefly the theory of fluctuations for model (3) 
starting from a kinetic equation description in phase space. As we deal with 
dilute mixtures, the equation will reduce to the usual Boltzmann form. We 
adopt the notation ff~ for the Boltzmann probability density of  component  
y corresponding to an internal state ,~ and assume for simplicity that the 
spectrum of  ~ is discrete. The bar over F J  reminds us that in the Boltzmann 
equation description, F J  represents an average quantity. Bearing this in 
mind, one can easily write the Boltzmann equation corresponding to model 
(3)(13): 

dF~X/dt = ~ Bjk~,FjA-fk M -- 2 ~ A.jkzF.xFj x + (dF~X/dt)e, (15) 
jk~ jk t  

In the r.h.s, of  this equation. (dF~X/dt)el describes the effect of  elastic collisions 
and the remaining two terms refer to reactive collisions. Bi~, and Aijk, are the 
transition probabilities per unit time for scattering between two molecules in 
states (/j) into two molecules in states (k/) for the reactions corresponding 

s The change of character of a stochastic process induced by a contraction in the description 
is a well-known phenomenon in stochastic theory (sce, e.g., Kac, Ref. 14a). 

9 The inadequacy of the birth-and-death process formulation has long been recognized in 
the theory of cascade processes. See, e.g., Bharucha-Reid, Ref. 4, Ch. 5. 
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to the two steps in (3). They satisfy a number of conditions imposed by the 
mechanics of a scattering process: 

A ~i.l~ : 0 

A~,k~ -- Aji.kt = A, ,z~ ~ 0 for (k l )  ~ (i j)  (16a) 

Ais,~:z .... 0 
kl 

i f  one requires in addition microscopic reversibility, we have 

Aij.kl = Ak~.ij (16b) 

The system is again assumed to remain uniform. The factor two in front 
of the quadratic term in F x expresses the fact thai the population of X in the 
a state may be decreased in two ways, corresponding to either of  the two X 
molecules in the second step of(3) being in the energy level ~. 

We now place ourselves in the limit of very frequent elastic collisions. 
According to our previous remarks, this implies 

F x ~ F x~~ ~= local Maxwellian (17a) 

and similarly for A, M, D, E; i.e., 

(dF~X/dt)el -~. 0 (17b) 

We are thus permitted to neglect the explicit effect of elastic collisions in the 
kinetic equation. Of course, the influence of these collisions remains implicitly 
in the reactive terms through the fact that the molecular speed distributions 
are now Maxwellian and that distinction is made between molecules occu- 
pying different momentum states. In fact, Eqs. (15) and (17) now express 
that, as a rule, the system remains stationary on the microscopic scale 
because of the frequent elastic collisions, but from time to time, it is slightly 
perturbed by reactive collisions between molecules which are sufficiently 
energetic to overcome the potential barrier for binding. In a sense, reactive 
collisions are "exceptional" events associated with the tail of  the Maxwellian 
velocity distribution. 

Let us set F~(Ar Ap)~ = f~,  withf~ the average number of molecules in 
the phase-space volume (,dr ~]p)~ around (r~, p~). In the kinetic equation des- 
cription the fluctuations off~ around this average are neglected. We now go 
to a more refined description in terms of the probability for having, at time t, 
given occupation numbers for the various internal states. An equation of  
evolution for this function may be derived by assuming that Eq. (15) defines 
a Markov process in the complete phase space. The procedure is quite 
similar to that leading to equations of the type (5) and has been discussed in 
detail by Kac and Siegert/~*~ One obtains, straightforwardly, a reduced 
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equation of evolution for the distribution o f f  x summed over the reservoir 
variables: 

dP({fx} ,  t)/dt : -  ~ B~k~LAffU[P(J'~. x -- 1, {f'}, t) --- p(j~x, {f,}, t)] 
ijlcl 

-~- ~,, A~m[(fi x -i- l)(Ji x -i- 1) p(j~x _[. 1 , f ix  : 1, I f ' } ,  t) 
ijt:l 

- /WjxP(AX,  L x, {f'}, t)] (18) 

Here, ( f ' }  denotes the occupation numbers of the states which are not 
implied in the reaction steps. It is easily verified that when Eq. (18) is multi- 
plied b y f f l  and averaged over all f ' s ,  it yields Eq. (15) provided a factoriza- 
tion assumption is made on P. We shall come back to this point later in this 
section. Finally, it should be pointed out that the reduced equation (18) is 
obtained from a more general master equation involving fluctuations of the 
reservoir composition, by summing over the reservoir variables and assuming 
that the latter vary over a different time scale compared to the variables of  
the subsystem corresponding to constituent X. The validity of  this decoupling 
assumption is discussed in detail in Rcf. 3. 

The difficulty in solving Eq. (18) arises from the infinite number of 
coupled terms contained in the two sums over internal states in the r.h.s. For 
this reason, we shall presently study this equation in the limit of  small 
fluctuations. As in Eq. (6), we express this limit by setting 

A x = f J - i - 3 f k x = : f ~ X + e x k ,  e ec Ixk/f,r (19) 

where the deviations xk are now due to thermal fluctuations. 
Expanding consistently both P and the coefficients in Eq. (I 8) in powers 

of E and keeping the dominant terms, we obtain 

ep({x), t) 
at 

1 ~,2p 
- ~ Bi~L~fJM 2 ~x~2 

ijkL 

+ E A.k~ [L X ~ x,e  + L x ~ im  8x~: -S x~ x jP 

~x---T + fjXx~ 

l [ 82P 8"P I 

i j k t  

( Z A.,- ,L% ~' ex--F -~ e x ,  
i jkl  

- E B . J / L "  e_PP 
~Xz: ijlc[ 

2 g2p .] 
~x~ ~)xjJ 

(20) 
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The last two terms in this equation vanish provided f x  is taken to satisfy the 
kinetic equation (15) at the steady state. This is consistent with the limit of 
small fluctuations considered in this section: any deviation o f J  x from the 
nonftuctuating regime described in Eq. (15) introduces in Eq. (20) higher- 
order terms in E. 

The simplified equation (20) is now integrated over all x's but one. 
Setting 

P1 ..... ( x l  ,. . . ,  x~ , t )  =- j dx~..l. . . . .  d x ~  p(s,-~,~.~j, t) (21) 

and taking into account relations (16a) wc obtaint 

8Pl(X~ , t )  1 ~" f t  ~ 2 Z B 'J . f f~Af ;  ~t c"'Px(x~'z, -o t )  
i i l  (TXc~" 

~2Pz(x~ ,  t )  8. -v~Pl(x~ , t )  -- E 2 E 
j k l  jill 

(~P12(A'.~ , .X'j, t) 
- -  2 ~ A~j~.~L x [ dxj xj (22) 

We see that Eq. (20) gives rise to a hierarchy of equations relating 

8P~(x~ , t ) / S t  to t ' ,2(x~ , xs  , t )  

and similarly ?Pl . f f6 t  to P~.~:~, etc. It is easy to see, however, that this hierarchy 
may be decoupled into separate component equations provided a factoriza- 
tion assumption is made on the initial-stale reduced probability functions 

..... ( ( L } ,  t = o) :  

P, ..... ((fo}, 0) = ]LI  P z ( J ; ,  0), s <.~ x (23) 
i " '1  

Indeed, Eq. (18) has a very similar form to the quantum mechanical Pauli 
equation in the second quantization representation. "5) The interaction opera- 
tor appearing in this equation has the structure of a diagonal fragment (~s) in 
the sense that it connects two states without spatial correlations between 
particles. I n addition, correlations arising from statistics are absent in Eq. (18), 
which refers to a classical mechanical system. We conclude therefore that 
the interaction operator in Eq. (18) propagates the factorization property 
to terms of the order l / V ,  V being the volume occupied by the system: 

Pz ..... ({./~}, t) =:: ]!I PiO';, t) (24) 
i = l  

This equation, together with the definition (19) of the fluctuations x j ,  implies 
that the last term in Eq. (22) vanishes. The coefficients of the second deriva- 
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tive 82Pi/~x~ 2 of this equation may be the further simplified by assuming 
again, consistently with the Fokker-Planck approximation, that the averages 
f i  x satisfy the Boltzmann equation (15). One finally obtains the simplified 
form 

at - D-x-, x,P,(x~ , t) - O x ~  ~. A:s,:,fs x 
�9 ~kt 

(25) 
This equation has a very similar structure to the usual Fokker-Planck 
equation of Brownian motion theory with a friction coefficient ~ and a 
diffusion coefficient ~ given by the relations 

jk l  

(26) 
~ =: 2f~ x ~ A ~ m L  x 

jkl 

We observe that /~ > 0. As a result, the steady-state solution of (25) exists 
and is always stable? ~ To determine its explicit form, it will be sufficient to 
solve the equation #Pa(x~, t ) /& = 0, i.e., 

(eiex.)  X:Pl(XD -:- L " [ e : e , ( x D i e x ; ' l  = o (27) 

Note that the transition probability per unit time A,sxL cancels in the steady 
state. Equation (27) admits the solution 

P,(x . )  = (2,'rf~x)--'l 2 exp(-x.Zi2f= x) (28) 

with 

(af j )z  =_: f x (29) 

In Eq. (29), 3f~ stands for the fluctuations in the number of particles in state 
a. In terms of the Boltzmann probability densities, Eq. (29) takes the form 

8FX(Ar Ap)~ 8Fx.(Ar Ap).. - F X(Ar Ap)~ (30) 

or, as (At, Ap)~ ~ 0, 

8 F  x 8Fx, = F x 3(L -- r , )  8(p~ - p~,) (31) 

in agreement with the identities (11) and (13). 

~0 At first sight, it is surprising to see that ~= is not proport ional  to the linearized collision 

term of  eq. (15): - -2  ZmA,s~z(F ,  x 3F~ x + F--TgSFsX). This difference arises from the 
definition of  the thermal fluctuations x= which are microscopic entities satisfying the 
property J" dx~x~P~(x~, t)  - O. On the other  hand,  in the linearized Boltzmann equation, 

8F~ x is a macroscopic average. Notice that in a linear system or  for a single degree of  
freedom, this difference disappears.  
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Integrating Eq. (3.1) over momenta and assuming that the velocity 
distribution remains Maxwellian, we recover a result similar to the generalized 
Einstein relation (2). Similarly, the distribution of the fluctuations [Eq. 28] is 
expressed in terms of the excess entropy [as Eq. (1)] and the correlations 
between fluctuations in different regions of  position and velocity space vanish. 

We see that in the nonlinear, nonequilibrium model discussed in this 
section, fluctuations behave in agreement with the generalized Einstein 
formula provided the system can be treated as a dilute mixture, u This 
substantiates the qualitative arguments advanced in the previous section. 
Comparing the two master equations (5) and (18) or the corresponding 
Fokker-Planck forms (7) and (25), one can easily see that the inadequacy of 
the usual birth-and-death tbrmulation arises from an incorrect treatment of  
the internal states. For instance, Eqs. (5) and (7) imply that there is a finite 
probability that two molecules of  X in the same state [cf. term containing 
P(X _L 2) in Eq. (5) or factor four multiplying ?.xP/~'x in Eq. (7)] switch 
simultaneously to another level. In other terms, Eq. (5) or (7) describes 
correctly a two-level system, but not a many-particle system such as a dilute 
reacting mixture, for which the probability of  a simultaneous occupation of 
a level is vanishingly small in the thermodynamic limit X ~ o% V--+ oo, 
X/V -= finite [cf. conditions (16a)]. A bimolecular step or any other non- 
linear process therefore introduces in the general phase-space master equation 
molecular occupations referring to different internal states. This distinction 
cannot be expressed consistently in the usual birth-and-death type of formula- 
tion. 

Having developed the complete phase-space description, it is of  some 
interest to investigate the possibility of  obtaining a consistent closed equation 
in the number-of-particles space, which presumably will be different from 
Eq. (5) and will in general not describe a birth-and-death process. 

Consider first the related problem in which a three-state assumption is 
made on model (3). In particular, one differentiates between active (X) and 
inactive (A, M, E, D) molecules and assumes that both types of  molecules 
can occur in three different states. One also postulates the selection rule that 
only two X's at different levels (1, 2, 3) may combine: 

X,- + Xj -~ Xk, k :/: i : / - j  :/d k; (i,.L k) -= (1, 2, 3) (32) 

This set of  steps replaces the second reaction in scheme (3). Assume now that 
the evolution of the three intermediates (X1, X2, X:0 defines a birth-and- 

H For dense mixtures or for systems far from local equilibrium, the results are no longer 
given by Einstein-type expressions. There is no reason to believe, however, that in this 
more complicated case, the usual birth-and-death type of mastel equation will again 
become adequate. 
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death process in the number-of-particles space. The master equation de- 
scribing this process will have the same structure as the phase-space master 
equation (18) but the sums over (ij) or (k l )  will contain only three terms cor- 
responding to the pairs (12, 13, 23). Still, a given intermediate component 
index will occur twice in the sums. This property, together with factorization, 
is sufficient to ensure that fluctuations will behave exactly as in Eq. (29). 

In conclusion, in a set of reactions involving n intermediates with 
stoichometric coefficients r; (i = 1 ..... n), one should allow for at least 
rx q- . . . .  + r,, + 1 independent variables (representing essentially different 
internal states) and impose  factorization and the selection rule that in a 
reaction step, two particles cannot occupy the same state. Both rules are 
automatically satisfied in the thermodynamic limit as the number of levels 
tends to infinity [see Eqs. (16a) and (24)]. 

Let us now examine the possibility of deriving a closed master equation 
in the number-of-particles space. We define 

P(X,  t) = ~ p({fi.x},t) (33) 
~f~X=x 

In the generating function representation [cf. also Eq. (9)], this relation 
becomes 

f(s, t) :::: E [-[ SP({y,:~}, t) 
{&x}~ o i 

= lira ,~-({si} ,  t)  (34)  
~.i~s 

.~  being the multivariable generating function of P({f~}, t). Applying this 
transformation to the phase-space master equation (18), we obtain 

6f/?~t ~ k l A M ( s  - -  l ) f +  lira ~ A;j~(1 -- s;sj)(62,~/c~si ~sj) (35) 
si=s i j k t  

We have defined 113~ 

kl  ~: ~ B,~kz.~Afj M (36) 
i j /el  

We observe that the first term in the r.h.s, is identical to the corresponding 
term in Eq. (9a). This is due to the fact that in the master equation (18) the 
coefficient of the probability function P ( f k  x -- 1, {f'}, t) is independent of  
thefX's. On the other hand, the second term of (35) is more complicated and 
in the general case is not reducible to a second derivative o f f  as in the cor- 
responding term of Eq. (9a). 
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Suppose now one passes to the limit of  an infinite system considered 
earlier in this section (X--+ 0% V--* 0% X / V - -  finite). Then, relation (33) 
becomes meaningless and the only correct description is in terms of  the 
reduced distribution functions satisfying equations such as (22) or (25). 
Alternatively, in this case, the phase-space master equation cannot yield 
information about  the structure of  a master equation in X-space. Of  course, 
once Pl(f~ x) is found and the factorization property (which implies an 
infinite system) is applied, one can construct P(X) from (33) as an extrapola- 
tion of  a result which is really valid only in the limit X--+ or. 

Consider next the case of  a finite system for which one can construct 
both P(X) and the master equation (35) in X-space. This time, in the phase- 
space master equation (18), the probability function P does not factorize and 
one can no longer derive a closed equation such as (25) for the reduced 
probabilities. In Eq. (35) this is translated by the fact that ~-({s;} cannot be 
related in a simple way to f(s). In fact, one can show that the condition 
resulting from identifying (~z.~-/~si ~'sj)~,~=s with a derivative o f f ( s )  implies 
an unphysical family of  nonfactorizable generating functions .~-({si}). We may 
therefore conclude that in a finite system, the phase-space master equation 
cannot  reduce to a closed equation for the probability function P(X). Thus 
one should not expect the evolution of  P(X) to be cast in the form of a birth- 
and-death type of master equation similar to (9a). 

This conclusion is also supported by the results of  the classical theory of 
tluctuations of  concentration. The problem is formulated as follows. Con- 
sider a volume V containing N particles. What  is the probability P(X, t) for 
finding at time t, X particles in a small part  A V of the volume V? The sim- 
plest possible case of  independent colloidal particles each one of which 
performs Brownian motion has been analyzed in great detail by Kac. c1~ He 
points out that in the limit N---~ or, V-~ 0% N/V = finite, the process 
describing the number of  particles in A V at time t is non-Markovian. Still, 
the one time steady-state probability function P(X, t -7 oc) is a Poisson dis- 
tribution? 2 We see that even in this simple case the birth-and-death process 
formulation is inadequate. Afortiori, this conclusion should remain valid 
for the chemical models considered in this section, in agreement with our 
previous remarks. Again, it does not seem possible to derive in this formalism 
a closed master equation for P(X, t), owing to the very complicated depen- 
dence of this function on the probability distribution of the positions and 
velocities of  the individual particles. 

1~ We notice that the formulation in terms of a small volume d V enables one to derive the 
distribution of X in a finite system from the properties of the infinite system (N, V). 
The complications arising from the lack of factorization of p({fx}) for a finite system 
arc therefore avoided. 

82216/213- z o 
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4. T H E  V O L T E R R A - L O T K A  M O D E L  

In the preceding sections, we outlined the theory of nonequilibrium 
fluctuations for systems whose steady states are asymptotically stable. As a 
preliminary to the problem of fluctuations in the neighborhood of the onset 
of an instability, we consider in this section the Volterra-Lotka model which, 
as we shall see, lacks the property of  asymptotic stability. Originally, this 
model was proposed for describing the competition between a number of 
predator-prey biological species. (16) More recently, it has been analyzed in 
great detail from a statistical mechanical point of view by Kerner (m and 
Montroll et al. (ls~ 

We shall be particularly interested in the case of two interacting species. 
The Volterra-Lotka equations describing this system read a(;) 

d X / d t  = q X  - -  k 2 X Y ,  d Y / d t  = k 2 X Y  - EaY (37) 

As usual, ~16.tv~ we have assumed that the X - Y  coupling term appears with 
opposite sign in the two equations. Let us set 

q = k l A ,  e 3 = k:~D (38) 

It is easily see that Eqs. (37) are then the conservation-of-mass equations of 
the following set of irreversible autocatalytic chemical reactions (in the 
limit of an ideal mixture): 

A ~ X k ' ~ 2 g  

X---i- Y k ~  2Y (39) 
, k 3  , 

Y q- D ---,- E n-- D 

As we shall see soon, this chemical analog of the Volterra-Lotka model will 
prove very useful for understanding the mechanism of fluctuations around 
instabilities. 

Let us briefly recall the salient features of the evolution equations 
(37)(16,17). 

(i) The system admits a single nonzero steady-state solution 

Xo = k 3 D / k 2 ,  Yo :-= k l A / k 2  (40) 

(ii) Small perturbations around (X0, II0) exhibit undamped oscilla- 
tions with a universal frequency 

co o = ( k l k z A D )  x/z (41) 

(iii) For arbitrary perturbations, Eqs. (37) admit a constant of motion 

V(X,  Y )  = X § Y - -  ( kaD/kz )  In X - -  (kxA/k2)  In Y (42) 
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which defines for all X, Y > 0 a set of closed curves. Thus, finite perturba- 
tions are also periodic in time with periods depending on the initial conditions. 
The trajectories corresponding to this motion are all orbitally stable (but not 
asymptotically stable). 

We want now to study the behavior fluctuations 'around steady state (40) 
or around one of the periodic trajectories. To this end, it will first be assumed 
that Eqs. (37) define a Markovian birth-and-death process in the number-of- 
particles space. It is then easy to derive, as in Section 2, the equation of  
evolution for the reduced probability distribution P(X,  Y, t) (summed over 
reservoir variables): 

dP/dt = A ( X - -  1) P(X  -- I, Y, t) --  A X P ( X ,  Y, t) 

�9 -~ (X -~- 1)(Y -- 1) P ( X  + 1, Y - -  I, t) --- X Y P ( X ,  Y, t) 

-i- D ( Y  + I) P(X,  Y -!- l, t) --  D YP (X ,  Y, t) (43) 

This equation has a very complicated structure and will only be analyzed 
here in the limit of small fluctuations around the steady state. Following the 
same procedure as in Section 2, one may reduce (43) to a Fokker-Planck-type 
equation of the form 

OP(x, y, ~') d "~Y, ax 2 ar - y J ~ -  .... x d )  P(x ,y ,  z) + 

- ,-  (~_)1/~ g-'P(x,.V,~y2 r) ~2P(x,&~c ~y y' z)] (44) 

We have set 

X -  X o + DW~x, Y-:~ Y o - -  A1/~Y, 
(45) 

kl - k,, = ka == k, r = (kAB)l/2t 

It should be pointed out that the existence of  an infinity of stable periodic 
trajectories in the Volterra-Lotka model implies that the Fokker-Planck 
limit should be taken with caution. In fact, the results derived from Eq. (44) 
can only describe the short-time behavior around state (40) when the fluctua- 
tions are expected to remain small. 

From Eq. (44), one may derive a closed set of  equations for the second 
moments of  the probability distribution. Multiplying both sides by x 2, y2, xy,  
integrating over x and y, and using the boundary conditions 

P( -:E oo, y)  = P(x, -- co) ,-= 0 (46) 

one obtains 

d ~ / d r  . . . . .  2)0--7 -c 2A, dyZ~/dT := 2~y i- 2A, d(xy)/d-c = x ~ -- y-~ - 1 (47) 
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with h = (A/D) 1/2. It is immediately seen that this system does not admit a 
steady-state solution. The time-dependent solutions are easily constructed. 
The result is 

x ~ = -- �89 -~- (l/A)] sin 2~- -?- cos 2r} -I- [h + (l/A)] ~- -i 5- 

= �89 -- (l/A)] sin 2~- -t- cos 2~-} -I- [h + (l/A)] r + �89 (148) 

xy  -- �89 -I- (l/A)](cos 2~- --- 1) -- ~- sin 2~- 

The initial conditions used are 

(xY)T.o = 0, (x2),=0 =: (Y~)~=0 = 1 (49) 

Thc last three conditions imply that initially the system behaved according 
to thc gencralized Einstein rclations (1) and (2). We see that, iu spite of this 
initial condition, the variances ~ and ~ incrcase in time, deviatc immediately 
from the Poisson regime, and cannot reach a new steady statc. Stochastically, 
therefore, the stcady state (40) is mcaningless, cven in the limit of infinitesimal 
fluctuations. The system exhibits abnormal, critical fluctuations which 
increase linearly in time with a periodic "background noise." Ecologically 
this situation has a clear interprctation: Thc steady state prcy distribution is 
never stable because there is no internal mechanism which reestablishes 
equilibrium once the latter is perturbed by the predator. 

A closer study of the structurc of the partial differential cquation (44) 
helps to explain this peculiar behavior of the second moments. Indccd, 
Eq. (44) is elliptic everywhere in thc ( x , y )  plane ( -oo < x, y <- t -oo) .  
Qualitatively, thercfore, it describes diffusion in an intinitc medium without 
damping (becausc of the peculiar structure of thc first derivative tcrms) and 
with an initial condition corresponding to a local inhomogcneity in the 
neighborhood of the origin. Thus, for r > 0, the system tends to "spread" in 
(x, y) space and smooth the initial inhomogencity. Of course, for long times, 
new effccts associated with large fluctuations are expected to modify this 
behavior. 

5. PHASE-SPACE D E S C R I P T I O N  
O F  T H E  V O L T E R R A - L O T K A  M O D E L  

The results of the preceding section are direct consequences of the 
assumption that the Volterra-Lotka equations (37) define a Markovian 
process in (X, Y) space. On the other hand, the results of Section 3 prove 
that the chemical analog (39) of the ecological model requires a phase-space 
description of the kind discussed in the Section 3. In this description, it is 
implied that fluctuations define a Markovian process only in the complete 
phase space, including internal states. Assuming the system is maintained 
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uniform in space, it is easy to derive the two coupled Boltzmann equations 
for the average densities of  particles of constituents X and Y in a given 
internal state (see Section 3 and Ref. 13): 

affix/at = -- ~ A~jk~e~xF~ A + 2 ~ Aj .~FjxF, /  - ~ B~jktF~xFj r (50a) 
j k l  ]kt  j k l  

dFBY/dt = - ~ Beyk,F~xFe r + 2 Z BJ~Btfi~ xF~r -- Z CB~,o~F~xFj ~ (50b) 
jk~ jtct j k l  

The transition probabilities per unit time for reactive collisions Aij1.:~, Bim,  
C;j~ satisfy conditions (16a) and the factors two have the same significance as 
in Eq. (I 5). Elastic collision terms have not been added, owing to the assump- 
tion that the system has attained a local equilibrium regime. 

We observe that the structure of Eqs. (50a, b) is quite different from 
Eqs. (37) or their generalization to many components ~t6.m in spite of the 
fact that on averaging (50a, b) over the internal states, one obtains (37) iden- 
tically. The most striking difference is that in Eqs (37), dX/dt and dY/dt are 
proportional to X and Y, respectively. On the other hand, in Eqs. (50a, b), 
dF~X/dt is not proportional to F~ x owing to the terms expressing, e.g., that 
two molecules of X in state ~ may be created from X and Y in different 
internal states. Thus, one should not expect Eqs. (50a,b) to give rise to a 
constant of motion as in the Volterra or in the Kerner analysis, c~G,~7~ Bearing 
also in mind the results derived in Section 3, one could anticipate that the 
phase-space description of fluctuations for the chemical Volterra-Lotka 
model (39) would be quite different from the picture outlined in the previous 
section. 

Before we proceed to the analysis of fluctuations, we wish to emphasize 
that, independently of the chemical kinetic interpretation, the two levels of  
description given by Eqs. (37) and (50a,b) correspond to two largerly different 
but interesting ecological situations. In the system described by Eqs. (37), it is 
assumed that the individuals forming the prey population are consumed by 
the predator without discrimination. When the predator population is 
comparable to or larger than that of the prey, it is reasonable to expect that 
this is indeed the most probable situation. However, in the more realistic 
case of  small predator versus prey ratio, the most natural competition con- 
sumes preferentially those prey individuals having small values of some 
suitable "fitness" parameter which measures the ability to resist to or escape 
from the predator. It is then natural to expect that in such systems, in addition 
to the effect of predators, the internal processes determining the fitness 
distribution in the prey species 13 should play an important role. One of  the 

~3 As an example of such internal processes, one may cite the process of mutation in 
a bacterial population which may give rise to resistant mutants to, e.g., a viral attack or 
to a chemical substance. 
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consequences of these processes is to permit an evolution of the prey species 
in which the unfit individuals belonging to the tail of the internal distribution 
are eliminated continuously. Referring to the discussion at the end of 
Section 2, one can realize easily that this situation is well described by a set 
of equations of the type (50a,b), provided one suitably reinterprets the 
parameter c~ determining the internal state. 

Let us now study the fluctuations around the steady-state solution of 
Eqs. (50a,b). We assume that the latter define a Markovian process in the 
complete phase space. The corresponding master equation for the reduced 
probability distribution p({fx} ,  {fir},  t) reads 

de({fx},  {St},  t) ldl  

:- ~ ai~k,J~A[(f~ x ~- 1 ) P ( f i x +  l , fk  x -- 1,fz x -  1, {f'}, t) 
i jk l  

--f,.xPff,:x,.f~x, ftx, {f'}, t)] 

+ ~ B~j~,[(J~x+ 1)(/} Y -t-1) 
i j k t  

• p(f ix + l , f i r  + l , j ; r  _ l , J J  -- 1, If '}, t) 

- .[ixf,.vP(f~ x, .LY, fk Y, f~g, {f'}, t)] 

-t- ~ C~skzfjo[(fs Y t- 1) P(f~r + 1, {f'}, t) 
i jk l  

--.kYP(f, Y, {f '} ,  t)] (51) 

Again, we shall study this equation in the limit of small fluctuations. Using 
the same method as in Section 3 and imposing again the factorization 
condition (23) one obtains the following set of Fokker-Planck-type equa- 
tions: 

aP~(x~, t) 
~t 

aPj(yB, t) 
at 

a x, Pi(x , ,  t ) [2  Cj.- y. A.~ff'ixfs A a(In----f'x)l 
,'~.V~ p ~ iSz ~ t  J 

1 
-i- a2Pl(x''ax~ = t) [2 Eis, A"~'flxf'* 2 gt 

a Y~PI(Y~, t )[2  Iy 0,(1;fB Y) Z xs," ] 
ijl 

a2Pl(yB, t) [ l afB Y ] 
ay Z 2 ~ Bisazfixfj Y 2 at " 

i j t  

(52a) 

(52b) 

We have set 

f x = f x + x , ,  f~Y = fB r + YB (53) 
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It should be pointed out that, strictly speaking, Eqs. (52) are coupled through 
the average values f x  and f r  which have to satisfy the self-consistency con- 
ditions 

.Lx =_: ~ .f xp({fx},  {fv}, t) 
{sx},lsv} 

L ~ = Z .l.Yp({.fx},{f~),t) 
isx},(sri  

(54) 

This coupling, however, is quite different from that implied by Eq. (44), 
which does not admit factorizable solutions. To a first approximation 
(i.e., as long as one remains close to the reference state), one is allowed 
to identify the f ' s  with the macroscopic averages appearing in the kinetic 
equations (50a,b). It follows that the friction coefficients in Eqs. (52) are 
always positive and therefore these equations admit a steady-state soh~tion 
which is stable with respect to small thermal fluctuations. To calculate the 
probability distribution in this state, it is sufficient to set OPU~t = 0. Equa- 
tions (52) reduce to a form similar to (27): 

(?~/?x~) x~P,(x~) %-.Lx(82Pl,"~)x~ z) :--- 0 (55a) 

(g/8)'~) Y~PI(Y~) -k f r(82pjgyf)  = 0 (55b) 

Again, the transition probabilities A;skz and B~j~,z cancel in these equations. 
The solution of (55a,b) is identical to (28) with 

(Sfx)2 =: f x, (~f r)z :._..fr (56) 

We see that one recovers the generalized Einstein relations, as expected 
from the results of Section 3 and the qualitative arguments advanced in 
Section 2. Thus, the analysis based on the birth-and-death type of formulation 
of Section 4 is incompatible with the phase-space description outlined in this 
section. Comparing Eqs. (43) and (51) we see that the inadequacy of the 
former is due to the fact that, for instance, in the first step of the reaction 
scheme (39), it is implied that two molecules of X are produced in the same 
state as the molecule of X which combines with A. Now, in a macroscopic 
system in the thermodynamic limit, the probability of this event is negligible 
compared to the probability of the process described by the first term of 
Eq. (51). Hence, Eq. (39) cannot describe correctly the fluctuations in a 
thermodynamic system. Alternatively, a closed master equation in the num- 
ber-of-particles space cannot describe a Markovian process. 

The statistical properties of the Volterra-Lotka system have also been 
investigated by Kerner ~m and more recently by Montroll et aL ~18~ Kerner's 
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theory is based on the existence of a constant of motion [Eq. (42)] which is 
also shown to extend in the limit when the number of interacting species 
pairs goes to infinity. In this case, Kerner considers the kinetic equations (37) 
(suitably extended to an infinite number of variables) as microscopic equations 
of motion in a phase space spanned by 

coordinates Ux, = In(XJD~) 

momenta uv, = ln(Yi/Ai) (57) 

and derives a Liouville equation in the space of {u}'s. Combining this with an 
additional, equally a priori probability assumption, Kerner deduces an 
equilibrium solution of the form 

(58) 

Because of the additivity of V over species, ~j6,~7) P is factorizable. Moreover, 
in the limit of small deviations from the steady state, it can be shown that ~19~ 

V -  V 0 vc (,32S)0 (59) 

where V 0 is the value of V at thc steady state. Thus, P reduces to the gene- 
ralized Einstein distribution (1) and implies Eq. (2) for the mean quadratic 
fluctuations. In Montroll 's analysis, a similar result is derived by adding 
fluctuating force terms in Eqs. (37) and assuming that for small deviations 
from the steady states, the correlation between these forces satisfies the same 
condition as in Brownian-motion theory. 

We see that the results derived in this section are in qualitative agreement 
with the Kerner and Montroll theories in the limit of small fluctuations. The 
formulation and the domain of applicability of the two types of approaches 
are however quite different. In Eqs. (50)-(56), the index cx refers to internal 
states, whereas in Eq. (57), i refers to species number. Moreover, the kinetic 
equations (50a,b) which do not admit a constant of motion, are considered 
in our analysis as macroscopic, average equations of evolution and cannot 
themselves yield information about fluctuations. The latter are not intro- 
duced artificially in the problem but are direct consequences of the 
dynamics of a many-body system in phase space. ~H,lal 

In Kerner's analysis, the information about fluctuations does not come 
from the original Volterra Lotka equations but rather from the additional 
equally a priori probability assumption. In principle, the reasonableness of  
this assumption cannot be controlled. In the limit of small deviations from 
the steady state, the results of this section prove, implicitly, that it becomes 
justified. 
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6. D I S C U S S I O N  

In this paper, we have shown that in nonlinear open systems undergoing 
chemical reactions far from thermodynamic equilibrium, it is necessary to 
adopt a stochastic description based on the Boltzmann equation in order to 
describe correctly the distribution of thermal fluctuations around steady 
states. It is only in the limit when the state of the system is close to equili- 
brium and also in the case of unimolecular reactions (linear systems) that this 
more complete description does not contradict the results based on the usual 
birth-and-death process formulation. As a consequence of this result, in 
dilute mixtures, small thermal fluctuations behave according to a generaliza- 
tion of the Einstein relations, even when the reference state of the system is 
not asymptotically stable (as in Sections 4 and 5). 

We believe that the conclusions reached in Section 5 provide a valuable 
insight to the problem of the onset of oscillations and instabilities in macros- 
copic physics. Indeed, a system in the neighborhood of an instability behaves 
in much the same way as the Volterra-Lotka model in the sense that macros- 
copically, small perturbations are not damped or amplified. Now, the analysis 
of Section 5 shows that in the phase-space description, small thermalfluctua- 
tions are damped. At first sight, this result may seem paradoxical. Because of 
the intinity of periodic trajectorics around the steady state in the Volterra- 
Lotka model, one would cxpect that the system may have no criteria to 
choose the "right" or most probable regime and that this inability would 
manifest itself by abnormal fluctuations of some kind, which is ruled out by 
the results of Section 5. How, then, can a system at or slightly beyond a state 
of marginal stability be driven to the new regime beyond instability by 
thermal fluctuations? We believc that the answer to this question may be 
as follows. 

(i) First, it has to be realized that the lack of asymptotic stability or the 
instabilities observed in nonlinear dissipative systems (chemical instabilities, 
turbulence, etc.) are purely macroscopic phenomena which have no direct 
molecular analogs as long as the system is maintained in a local equilibrium 
regime. It is therefore reasonable to expect that systems undergoing such 
macroscopic instabilities cannot evolve from a given macroscopic reference 
state by a mechanism of thermal fluctuations of usual size (i.e., very small). 
This explains why small fluctuations are damped in the Boltzmann equation 
description for the model discussed in Section 4 and 5. Instabilities such as 
plasma instabilities ~'~ or laser thresholdr 2u are, on the other hand, instabili- 
ties 9~ the velocity distribution and cannot be described in the framework of  a 
local equilibrium theory. While such "molecular" instabilities can be thought 
of as second-order phase transitions, ~2z~ macroscopic instabilities appear to 
be more closely related to first-order phase transitions. 
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(ii) A change in the macroscopic state of a system in a local equilibrium 
regime has therefore to arise from a mechanism of large thermalfluctuations 
of macroscopic size. Again, this substantiates the analogy with a first-order 
phase transition. The probability of these fluctuations is very small. As a 
result, even during the macroscopic evolution, the generalized Einstein 
relation (2) would be practically satisfied around the true (time-dependent) 
average. The time required for the formation of this evolving mode would 
thus be necessarily macroscopic, i.e., very long compared to the relaxation 
time between molecular collisions. In fact, it should be comparable to the 
"hydrodynamic" scale of macroscopic evolution. 

(iii) The probability that such a finite fluctuation occurs everywhere 
in a macroscopic system should be practically vanishing. Rather, the most 
natural molecular mechanism underlying a macroscopic evolution should be 
as follows. A small subsystem (containing, say 10 z particles) begins to evolve 
as a result of a finite fluctuation. This creates a local inhomogeneity which in 
usual circumstances would tend to be damped by diffusion. However, if the 
system is near the threshold of a macroscopic transition, diffusion should 
rather provide a mechanism for propagation over macroscopic distances of  
the disturbance created by a fluctuation. 

In order to substantiate these conjectures, it would be necessary to solve 
the master equation (51) in a way which takes into account, self-consistently, 
the simultaneous evolution of fluctuations of all possible sizes and of  the 
macroscopic state. This means that one has to study the time-dependent 
solutions of Eq. (51) including the effect of  arbitrarily large fluctuations la and 
imposing for any macroscopic state the self-consistently condition (54). This 
study, which should provide such information as, e.g., the critical size of  
fluctuations beyond which the system starts evolving, is presently in progress. 

As we briefly discussed in Section 4 and 5, the critical behavior of  
fluctuations predicted by the birth-and-death type of analysis of Section 4 is 
not expected to occur in a local equilibrium regime but rather is peculiar to 
certain types of ecological models. It is interesting to compare this conclusion 
with a recent result by Mazo, 122) who also finds a critical fluctuation behavior 
in the neighborhood of an instability of the macroscopic equations of evolu- 
tion. Essentially, Mazo shows that in this limit, the friction coefficient which 
would appear in a Fokker-Planck equation in the numbers-of-particles space 
vanishes and therefore the mean quadratic fluctuations start growing in time. 
This is quite similar to the behavior described by Eqs. (48) of this paper. 
Again, in a realistic chemical kinetic system, this type of evolution should 
only be expected to describe large fluctuations of macroscopic size. Small 

14 In this case, the probability distribution is expected to be different both from the gener- 
alized Einstein form and from the distribution derived by Kerner. 
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thermal fluctuations should still be damped as in the model discussed in 
Section 5. 

Independently of their possible interest for the understanding of in- 
stabilities, the results of this paper have some implications in the field of 
nonlinear thermodynamics of irreversible processes. Consider a dilute 
system of X particles in a local equilibrium regime (X may refer to a chemical 
constituent of a reacting mixture). According to kinetic theory, the state of 
the system p is completely determined by the singlet distribution function fz 
(in the notation of Section 2 to 5): 

,g 

~(I . . . . .  i v )  .... c t  [-l  F~( i )  

i- O(deviations from local equilibrium) 

where 

(6O) 

J d~Fl(i) -~ X (61) 

index comprising all variables but the number of particles (e.g., 

P(X) = ( I /X! ) )  {d~} p = (exp --X)(XX/X!) (62) 

which reduces in the limit of small fluctuations to the Einstein formula (1), 
whether X stands for an equilibrium or for a steady-state average. 

Consider now the entropy of the system in the grand canonical ensemble. 
Again, because of local equilibrium, we expect 

S . . . .  k {dxi) p log p 
X ~ O  

. . . .  k X  ~ P[Iog(X,/V) - X + X log ~" -- log X!] -i- So(X) 
X = 0  

where S0(X) contains terms related to internal energy. Applying Stirling's 
formula and expanding S to second-order terms, one finds 

S = - -kX log(X/V) -1- So(X) -~- �89 ~2S (64) 

where 

3~S ~ - X[(3X)2/2X21 (65) 

is the value of the second-order excess entropy around the steady state as 
predicted by local equilibrium thermodynamics. 

(63) 

c, being an 
momenta). A straightforward consequence of(60) and (61) is that the distribu- 
tion of X is given by the Poisson law~23~: 
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We see that the validity of the Poisson law and the local equilibrium 
assumption permit us to extend the formalism of statistical mechanics and 
thermodynamics to include fluctuations, in the sense that the probability 
distribution of the latter determines uniquely the entropy of fluctuations. 
This is in agreement with the GIansdorff-Prigogine approach to the nonlinear 
thermodynamics of irreversible processes/11 

A P P E N D I X :  F L U C T U A T I O N S  I N  A N  A U T O C A T A L Y T I C  
SYSTEM 

Consider the autocatalytic scheme 

k I k 
A + X--+2X, B-i- X ~ 2 B  

ks 
(A.1) 

which is similar to one of the models treated by Hawkins and Rice. Is~ 
The inverse reaction in the first step is neglected. The system is open to 

A and B and for simplicity we set kl -- k2 = 1. The equation of mass con- 
servation reads 

dX/d t  = (A - -  k B )  X + B ~ (A.2) 

with the steady-state solution 

Xo = B/[k - -  (A /B) I  (A.3) 

In contrast to (4a), this equation is linear in X, However, system (A.1) is 
intrinsically nonlinear and will now be shown to exhibit non-Poisson fluc- 
tuations. 

The reduced master equation in the number-of-particles space of com- 
ponent X reads 

dP(X ,  t) /dt  ~- A ( X  --  1) P ( X  - -  1, t) --  A X P ( X ,  t) 

+ k B ( X  + 1) P ( X  + 1, t)  - -  k B X P ( X ,  t)  

+ B z P ( X  - -  I, t) - -  B z P ( X ,  t)  (A.4) 

In the generating function representation [cf. (9)], Eq. (A. 4) transforms to 

6f /~ t  = [A(s 2 - -  s) + kB(1 - -  s )J (e f /es )  + (s - -  l) Bff  (A.5) 

In the steady state, one obtains 

[k - -  ( A / B )  s](~f/es) - -  B f  ~ 0 (A.6) 

The properly normalized solution of tiffs equation is 

f = [k - -  ( A / B ) ]  B2/A [k --  ( A / B )  s] -B2/a (A.7) 
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Comput ing  the moments  o f  P from (A.7), one finds 

X =  ( O f l O s L = ,  - -  Bl[k  - -  (A /B) ] - - -  X o (A.8) 

~ X  2 (~SC/~s , , ) , , _= l  ~ ,, 2 == -- (Of/os),~=x t -  (~f/Vs).~=x --  Xo(l -~- /z) (A.9) 

with 

t~ - -  ( A / B ) / [ Z c  - ( A / B ) ]  (A. l O) 

We see that we obtain, as in Section 2, a distribution function which is 
different f rom the Poisson or  the generalized Einstein results (1)-(2). The 
deviation f rom (2) is propor t ional  to the factor  p, defined in Eq. (A.10) and is 
seen to depend on the explicit properties o f  the two steps in (A.I). It is only 
in the limit as k ~ co or  A / B  - ~  0 that  one recovers a Poisson-type variance. 
The analysis o f  Section 2 is thus confirmed: I f  the equations o f  mass con- 
servation o f  a nonlinear, nonequil ibrium system are assumed to define a 
bir th-and-death process in the number-of-particles space, one obtains a 
steady-state distribution o f  fluctuations which is different f rom the generalized 
Einstein formula.  
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